# EYE Components for NBBN -- Jos De Roo @prefix math: . @prefix log: . @prefix list: . @prefix e: . @prefix bbn: . # unplug the Full Bayes Belief Network builtin true <= { ("_P/2" e:biconditional) e:compoundTerm ?U. ("abolish" ?U) e:derive true. }. # plugin the Naive Bayes Belief Network builtin {?L e:biconditional ?D} <= { ?SCOPE e:call { ?L e:firstRest ({?A e:boolean ?B} ?C). ("if_then_else" {("nb_getval" "bnet" "done") e:derive true} true { () bbn:bnet true. ("nb_setval" "bnet" "done") e:derive true. } ) e:derive true. (?A) bbn:bvar true. (?B) bbn:bval true. ({?A e:boolean ?B} ?C ?D) bbn:nb true. } }. {() bbn:bnet true} <= { (";" { (";" { ?L1 e:firstRest (?I ?J). ?L1 e:conditional ?O. ?J e:sort ?K. ("findall" ?Y { ?L2 e:firstRest (?I ?X). ?L2 e:conditional ?Y. ?X e:sort ?K. } ?L ) e:derive true. ?L math:sum ?S. ?L math:memberCount ?N. (?S ?N) math:quotient ?Z. ("call" {?L1 bbn:bcnd ?P}) e:derive false. ("assertz" {?L1 bbn:bcnd ?Z}) e:derive true. ?I bbn:inverse ?M. ?L3 e:firstRest (?M ?J). ("call" {?L3 bbn:bcnd ?Q}) e:derive false. (1 ?Z) math:difference ?E. ("assertz" {?L3 bbn:bcnd ?E}) e:derive true. ("fail") e:derive true. } { ?L4 e:firstRest ({?I e:boolean ?R} ?J). ?L4 bbn:bcnd ?T. (";" { ("call" {(?I) bbn:bvar true}) e:derive false. ("assertz" {(?I) bbn:bvar true}) e:derive true. } true ) e:derive true. {?K e:boolean ?U} list:in ?J. ("call" {(?K) bbn:bvar true}) e:derive false. ("assertz" {(?K) bbn:bvar true}) e:derive true. ("fail") e:derive true. } ) e:derive true. } true ) e:derive true. }. {{?A e:boolean e:T} bbn:inverse {?A e:boolean e:F}} <= true. {{?A e:boolean e:F} bbn:inverse {?A e:boolean e:T}} <= true. (e:T) bbn:bval true. (e:F) bbn:bval true. {(?A ?B 1.0) bbn:nb true} <= { ("memberchk" ?A ?B) e:derive true. ("!") e:derive true. }. {({?A e:boolean e:T} ?B 0.0) bbn:nb true} <= { ("memberchk" {?A e:boolean e:F} ?B) e:derive true. ("!") e:derive true. }. {({?A e:boolean e:F} ?B ?C) bbn:nb true} <= { ("if_then_else" { ("memberchk" {?A e:boolean e:T} ?B) e:derive true. ?C log:equalTo 0.0. } true { ({?A e:boolean e:T} ?B ?D) bbn:nb true. ("1-_D" ?D) e:calculate ?C. } ) e:derive true. }. {(?A ?B ?C) bbn:nb true} <= { ?L e:firstRest (?A ?B). ?L bbn:bcnd ?C. ("!") e:derive true. }. {(?A ?B ?C) bbn:nb true} <= { ("if_then_else" { (?A ?D) bbn:bcnd ?E. (?D ?B ?F) bbn:nb true. ?D bbn:inverse ?G. (?A ?G) bbn:bcnd ?H. ("_F*_E+(1-_F)*_H" ?F ?E ?H) e:calculate ?C. } true { (?A ?B ?I) bbn:nc true. ?A bbn:inverse ?J. (?J ?B ?K) bbn:nc true. ("1/(1+2**(_K-_I))" ?K ?I) e:calculate ?C. } ) e:derive true. }. {(?A () 0.0) bbn:nc true} <= { ("!") e:derive true. }. {(?A ?L ?D) bbn:nc true} <= { ?L e:firstRest (?B ?C). (";" { (";" {(?B ?A) bbn:bcnd ?E} { ?B bbn:inverse ?F. (?F ?A) bbn:bcnd ?G. (1 ?G) math:difference ?E. } ) e:derive true. } {?E log:equalTo 1.0} ) e:derive true. ("!") e:derive true. ("if_then_else" {?E math:equalTo 0} {("epsilon") e:calculate ?I} {?I log:equalTo ?E} ) e:derive true. (?A ?C ?H) bbn:nc true. ("log(_I)/log(2)+_H" ?I ?H) e:calculate ?D. }.